Update: AASHTO TP 107 AMPT Cyclic Fatigue

FHWA Mixture and Construction Expert Task Group May 1, 2017 Ames, Iowa

Acknowledgements

- Y. Richard Kim, Cassie Castorena NC St. Univ.
- Xinjun "Sean" Li SES Group and Associates, LLC
- Chuck Paugh, Amir Golalipour ESC, Inc.
- FHWA Offices of Asset Management, Pavement, and Construction; Office of Infrastructure R&D

- FHWA Performance-Related Specification (PRS) initiative
- AASHTO TP 107 improvements
- Integration of AASHTO TP 107 into PRS
- Asphalt Mixture Performance Tester (AMPT) implementation
- Asphalt Technology Guidance Program

AMPT

- Temperature range from about 4° to 70°C
- Computer-controlled device
 - Software built-in for various test procedures
- Fundamental tests
 - Stress and strain modeling
 - "Bulk testing"
 - Pavement ME or $FlexPAVE^{TM}$
- Kits available for other tests

FHWA PRS Initiative

- Use of fundamental tests to capture variance between as-designed and as-built AQCs
- Asphalt Mixture Performance Tester (AMPT) used in performance-engineered mixture design (PEMD)
- Structural response model (stresses and strains)
- Performance volumetric relationships used in construction

FHWA PRS Initiative

PERFORI fundamental tests to capture ween as-designed and as-built

- ANCE TESTING ONLY SIGN PH mixture desig
- Structural response strains)
- Performance volumetric relation in construction

Performance-Engineered Mixture Design

- Fundamental
 - How much distress? How much life?
 - Stresses and strains
 - Material properties (i.e., modulus)
 - Use with structural response model (FlexPAVE[™])
 - Many temperature/loading conditions represented
- Index-Based
 - Go/no-go: correlation-based
 - Some engineering properties, some empirical
 - More tied to a material database
 - Not used with structural response model
 - A few temperature/loading conditions represented

Benefits of PRS

- Long term pavement performance predicted from <u>fundamental</u> <u>engineering properties</u>
- Incentives and disincentives justified through reduction or increase in pavement life
- Allow contractors to be more <u>innovative</u> and more competitive

Challenges with PRS

- Testing efficiency and simplicity

 Completed/Continuous
- Standardization of test methods
 - Ongoing
- Verifying performance prediction models
 - Completed/continuous
- Performance volumetric relationships
 - Ongoing
- Same principles and methods between mix design and PRS
 - Ongoing

Testing Efficiency and Simplicity AASHTO TP 107 Revisions

- Submitted to AASHTO SOM TS 2d
- Add failure criterion
- Simplification of language
- AMPT-specific
- Removal of spreadsheet derivation
- New strain selection guidance
- Small-specimen appendix
- Instructional videos (links available)

Standardization of Test Methods

Field Validation of AMPT Cyclic Fatigue

- Pavement prediction software built from models (FlexMAT[™] and FlexPAVE[™])
- Field validation
 - 59 mixtures
 - 55 different pavement structures
- Develop laboratory-to-field transfer functions
- Volumetrics have a seat at the table!

FlexMATTM

Κ

	А	В	С	D	E	F		G	Н	Ι	J	Ī
1	Description: This tab can b	e used to import test da	ata from IPC Glo	bal AMPT files dire	ectly into the					_		
2	template. Alternatively, the	e user can copy and past	te data directly	into the green cel	ls within the green							
3	tabs. Note that if data is im	ported using this tab, th	ne user must stil	ll enter mixture vo	lumetric properties in		Dynamic M	odulus		Fá	atigue	
4	the Sigmoidal Model Fit tak	b. This tab can also be u	sed to clear all d	lata that is curren	tly in the template.		Specime	en 1		Spe	cimen 1	
5												_
6	Instructions: Separate fold	ers should be created fo	or each dynamic	modulus test and	cyclic fatigue test.							
7	Each folder should contain	the AMPT data output f	files for one dyn	amic modulus or (one cyclic fatigue test.		Dynamic M	odulus		Fa	atigue	
8							Specime	en 2		Spe	cimen 2	
9	To import dynamic modulu	is data for the first test i	replicate into the	e template, press	the Dynamic							
10	Modulus Specimen 1 butto	on. A prompt will appear	r. Select the fold	ier where the AM	PI output files for the					1		Γ
11	aynamic modulus test are s	stored. After selecting the	ne appropriate i od collo within t	older, the data in	om the dynamic		Dunamic M	odulus		C/	atique	
12	second and third replicates	s by pressing the Dynam	eu cens within ti hic Modulus Sne	cimen 2 and Dyna	at this process for the		Specime	n 3		Sne	cimen 3	
13	Specimen 3 huttons respe	ctively	ne would sope	cimen z ana byne			opeenine			JPC	cimen 5	
14	opecimento buttono, respe	cervery.										T
15	To import cyclic fatigue dat	ta for the first fatigue te	st, preess the Fa	atigue Specimen 1	. A prompt will					_		
16	appear. Select the folder w	here the AMPT output f	for the cyclic fat	igue test are store	ed. After selecting the					Fá	atigue	
17	appropriate folder, the dat	a from the cyclic fatigue	e test data will b	e imported into th	ne required cells					Spe	cimen 4	
18	within the template. Repea	at this process for the re	maining cyclic fa	atigue tests by pre	essing the Fatigue							T
19	Specimen 2, Fatigue Specin	men 3, and Fatigue Spec	cimen 4 buttons	. Note that it is no	ot necessary to press							t
20	all of the buttons if you hav	ve fewer than three dyn	amic modulus a	nd / or four cyclic	fatigue tests.							t
21	Pross the Clear Template h	utton to romovo all dat	a that is current	ly in the template	Note that the Clear							
22	Template button should or	nly be used if the user w	a that is cullent	the blank template	ate							T
23	remplate button should of	ny be used if the user w										Ť
24												t

U.S. Department of Transportation Federal Highway Administration

23 24

FlexMATTM (2)

	A	В	С	D	E	F	G	Н		J	К	L	М	N		0	P	Q	B	
1	Description: F	its the sigmoidal and time-temperature shift fa	ctor models to tl	he storage r	nodulus da	ata obtaine	d from the	dvnamic r	modulus te:	st results.										Г
2	Instructions:							-,												
3	(1) Enter the p	ercentage of average Voids in Mineral Aggrega	te (VMA) and pe	rcentage of	f Voids Fille	ed with Asp	halt (VFA)	of the dvn	amic modu	ulus test spe	cimens in	to the green	cells within	the maximum						
4	limiting modul	lus table.																		
5	(2) If the butto	ons within the Import Data tab were not used to	p import the test	data, copy	and paste	the data co	orrespondi	ng to the f	ields includ	led in the M	easured D)ata table int	to the gree	cells from the						
6	summary dyna	amic modulus test files. Each block of test data	should correspo	nd to a sing	le replicate	e and temp	erature of	testing. In	clude data	for each tes	t specime	n. Do not av	erage data	prior to entry into	,					Г
7	the spreadshe	et.												,,						F
8	(3) Review the	load standard error, average deformation drift	t. average deform	mation stan	dard error	. deformati	ion uniforn	nity, and pl	hase unifor	mity cells w	ithin the I	Measured Da	ata table. Ti	ne cells will						F
9	appear vellow	where the data quality requirements of AASHT	O TP 79 and AA	SHTO PP 61	are not m	, et. which m	nav indicat	e an invalio	d test.											F
10						,														F
11	1	Maximum Limiting Modulus				-					. 7		-		1 05+09					
12	VMA (%)	16	(435)	000/7784 130	158 max]	E' = P 29.0	000.000(1	$-\frac{VMA}{+}$	3.000.000	VFA xVMA) +	1-1	P.		1.0E+00					
13	VFA (%)	73	20+	UMA				100) .		10,000	刀16.	VMA		1					_	
10		0.974	P	rala j	h-00						1.	100 /	VMA		1 0E+07				***	
14		0.074	650+	000(VFA)							29,0	000,000 3,0	000,000(VF	24)	1.02.07		and the second second	-		
15	Maxie (kmaj	2.28E+U7		VMA)																
10		Chift Easter									-				€ 1.0E+06	-				
17		Shift Hactor													đ					
18	a ₁	0.0008														×				
19	az	-0.1738	$\log(a_T) = a_1 T^2$	$+a_{2}T+a_{3}$											브 1.0E+05	ŀ				
20	a3	3.3172																- 0-		
21	Τ	21.1																• Sp	ecimen 1	
22	· rer														1.0E+04	-		▲ Sp	ecimen 2	
23		Sigmoidal Function						Fit Time	-Tempera	ture								× Sp	ecimen 3	
24	k	4 257			. 1	or(max F').		Shift	Factor an	d					4.05.00			— Fit		
25	δ	-1177	$\log(E'(\omega,T))$	= log (<i>E'</i> (ຜ	$_{R})) = \kappa + -$	05 (1104 12)	<u>_</u>	Sigm	nidel Med						1.0E+03					
26		-0.468				1+e ^{0+1,20} 9,00	\$/	Sigmo							1.0	E-04 1.0E-02	1.0E+00 1	.0E+02	1.0E+04	
20	Sum of Sa	0.400														Redu	ced Freque	ncy (Hz)		
27	Error	1.11E-02																		
20	LIIU	r																		⊢
20																				÷
20			ME	EASURE	D DATA	1									-				SIGMO	10
21			1					1	1											-
32		Erequency (Hz)	25	10	5	1	05	01							Badua	ed Frequency		#####	****	1
33		Dupamic modulus (MPa)	9559	8195	7256	5161	4432	2902							F' Ma	acured (kPa)	******	*****	******	H
24		Phase angle (Degrees)	15.54	17.1	19 /F	22.11	22.52	2300							E' De	adiated (kDs)	*****	*****	*****	H
25		Average temperature (*C)	19.94	10.0	10.40	22.11	20.00	27.40	-							Cal Error	*****	*****	******	H
20		Average rojoro-etrajo	62	62	61	20 E1	20 61	20 E1								ю, спо	*****	****	*****	Ľ
27		Average micro-strain	57	20	17	0.0	0.5	0.7												ŀ
20		Aueropa deformation drift (%)	0.7 70.1	2.3	07.0	120.7	10.0	174.1												ŀ
30		Average deformation drift (%)	-/0.1	-30.6	-37.0	-133.7	-132.0	-1/4.1												-
33		Average deformation standard error (%)	5.5	3.0	2.7 10.4	15.0	14	2.4												-
40		Deformation uniformity (%)	17.8	17.1	16.4	15.2	14	12.9												1
41		Phase uniformity (Degrees)	0.2	0.2	0.3	0.7	0.9	1.4												Ļ
42			05	10			0.5	0.1							- D /	15	11.005.04			Ļ
43		Frequency (Hz)	25	10	5		0.5	0.1							Heduc	ed Frequency	1.02E-01	4####	######	Ľ
44		Dynamic modulus (MPa)	2/43	2031	1596	8/8.2	698.6	403.1							E' Me	asured (kPa)	######	#####	######	Ľ
45		Phase angle (Degrees)	31.59	33.51	34.42	35.25	34.48	32.2							E' Pre	edicted (kPa)	######	#####	######	Ľ
46		Average temperature (°C)	40.1	40.1	40.1	40.1	40.1	40.1							5	iq. Error	######	#####	######	Ľ
47		Average micro-strain	61	58	57	55	53	49												L
48	100001	an men wed sterderd erres (%) won	83	1 52	1 35	27	1 32	1 5.8												÷

FlexMATTM (3)

	A	В		С	D	E	F	G	Н	1	J	к	L	Μ	N	0	Р			
1	Descriptio	on: Dete	ermi	nes the failure	e criteria paran	meters, cal	culates the	damage ca	apacity, and	optimizes f	the damage chara	acteristic cu	rve model coefficients							
2	Instructio	ns: No	data	action or ent	try is required.	The qualit	y of the dar	nage char	acteristic cu	rve model t	fit and repeatabil	ity of fatigue	e test results can be obse	rved in the	C versus S gr	aph. The C v	ersus S curv	ves fi		
	be in good	d agree	ment	t. The failure	criteria parame	eters are ca	alculated au	tomatical	ly. The G [®] ve	ersus N _f and	Cumulative (1-C) versus N _f g	graphs can also be used to	o further as	sess sample-	to-sample va	riability. Th	ne re		
3	N _f should	be line	ar in	log space. Th	e relationship	between C	umulative (1-C) and 1	N _f should be	linear. Thu	s, the repeatabili	ity of the fat	igue tests can be assessed	d by the R ²	values repor	ted in the G ^R	versus N _f a	and (
4	graphs an	d outlie	ers ca	an be identifie	ed by visually o	bserving d	eviations fr	om the tre	end line of t	he other da	ta points in these	e plots.								
-	Criteria	h de el el		~	1	_		N.		E vs	s S Model		- 0							
F	Cooffi	iviodei sierste		$G^* = \gamma \cdot N_f^*$		D ^R Failur	e Criteria	Ĩ	a cont	L Co	efficients	C=1-C	11. SC12							
5	Coern	cierits			•		0.00	J	(1-C)aN			-				<u></u>				
6	Y	#####	##			D"	0.63	$D^R = -$		L ₁₁	3.174E-03	_			U Vs.	S Data		4/		
7	δ	-1.22	0						N_f	C ₁₂	4.299E-01		<u> </u>	C	5	log(1-C)	Log(S)	1		
8			_						_				Sample 1	1.000	U					
9		N _F		G ^r	log(N _f)	log(G*)	<u> Fum. (1-0</u>	D*		Fat	iaue Test	H	$\left(\begin{array}{c} c_{11} \\ \end{array} \right) \frac{1}{5}$	0.894	4485	-0.976	3.652			
10	Sample 1	#####	##	1.00E+03	3.81	3.00	######	0.65	_	Ter	pperature	41	a a+1	0.848	9064	-0.818	3.957	+		
11	Sample 2	#####	##	4.81E+02	3.99	2.68	######	0.63		Sapp	27.11		$\left \frac{\alpha_T}{\alpha}D^R\right $	0.819	12982	-0.741	4.113			
12	Sample 3	#####	##	2.28E+02	4.26	2.36	1.15E+04	0.63						0.777	19792	-0.651	4.296			
13	Sample 4	#####	##	7.68E+02	3.77	2.89	######	0.61				S =	<u> </u>	0.759	24511	-0.617	4.389			
14													10,000	0.759	24511	-0.617	4.389			
15														0.725	33629	-0.561	4.527			
16	1.0E+	⁺04 г						1.0 赛						0.705	39722	-0.530	4.599			
17		1	R² =	: 0.9348								 Sample 	1	0.689	44632	-0.507	4.650			
18	4 05	00						0.8 📐				Sample	2	0.677	48541	-0.490	4.686			
19	1.UE*	-03 -			<i>°</i> ,			0.0	×.			 Sample 	3	0.666	51984	-0.477	4.716	\square		
20					· · · · ·	· ·			The second second			× Sample	4	0.649	57887	-0.455	4.763	4		
21	%-10E+	-02				× .		0.6	No. of Concession, Name		-	-Fit		0.630	64988	-0.431	4.813	4 1		
22	0.02							υ U	100	No. of Concession, Name				0.619	53013	-0.419	4.839	4 1		
23								0.4			Sec.			0.606	74313	-0.404	4.871			
24	1.0E+	+01 -									Contraction of the local division of the loc		0.034	04527	-0.332	4.030				
26								0.2				and the second								
27													L	0.571	94913	-0.367	4.331			
28	1.0E+	-00 -		· · ·				0.0						0.535	99974	-0.345	5,000			
29		1.0E+	+02	1.0E+0	03 1.0E	+04	1.0E+05	0.0	100.00	200.0	00 300 000	400 000	500 000	0.539	104655	-0.336	5.000			
30					Nr				100,01	200,0	S 500,000	400,000	500,000	0.529	109918	-0.327	5.041			
31					14E+04 -									0.520	114715	-0.318	5.060			
32			\rightarrow		1.46.04	$R^{2} = 0.9$	9994							0.510	119879	-0.310	5.079			
33					1.2E+04									0.502	124572	-0.302	5.095			
34				0		_			1					0.492	129951	-0.294	5.114			
35				5	: UE+04	_			1					0.489	131880	-0.292	5.120			
36				e	8.0E+03	-			-					0.482	139914	-0.286	5.146			
37				ati	0.05.00			~						0.474	144967	-0.279	5.161			
38				- In	0.UE+U3	-								0.466	149665	-0.273	5.175			
39				L	4.0E+03	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							0.459	154590	-0.267	5.189	4		
40				Ū										0.451	159760	-0.260	5.203			
41					2.0E+03	-								0.443	164968	-0.255	5.217	4		
42					0.0E+00									0.437	169/10	-0.249	5.230	4		
43					0.00	+00 50	E+03 10	0F+04	1.5E+04	2 0E+04				0.430	174674	-0.244	5.242	4		
44			-+		0.02		2 00 1.0	Nr		2.02.04				0.423	1/3623	-0.239	0.204	\vdash		
45			-+					- 4						0.416	184991	-0.233	5.267	\vdash		

FlexPAVETM

M HexPAVE 1.0 Program : Untitled Pro	oject	the second se	Conception of the Conception o
File Analysis Tools Help			
🗋 🗃 🖬 🕨 🛆 🔍 🥄 🐙	9		
File Analysis Tools Help	General Information × Pavement Type New Pavement AC-on-AC overlay Rehabilitation Pavement Location Latittude 0.0 Longitude 0.0 Traffic Obesign Vehicle Traffic Spectrum Optional Description Project Name Author City/State Date	Analysis Options Pavement Response Analysis Pavement Performance Analysis Fatigue Options Rutting Options V Fatigue Cracking V Thermal Stress Healing Aging	Pavement Construction Timeline Pavement Construction Date January 2014 Traffic Opening Date January 2014 Pavement Design Life (years) 20
	Units Errors and Warnings	Advanced	

.

÷

FlexPAVETM (2)

FlexPAVE 1.0 Program : Untitled Pro	oject									
le Analysis Tools Help										
🖆 🖬 🕨 🛆 🔍 🤤	9									
Project General Information Design Structure Climate Data Traffic Data Outputs and Analysis Options Results	General Information × Design Structure × Structure General Information Structure Name Flexible 3-Layer Pavement Pavement/Lane Width (m) 3.65	Layer Properties Layer Thickness (cm) Material Type	AC 10 Asphalt Co	oncrete	Infinite Layer	• • m	ore	 GR Based Criterion DR Based Criterion 		
	Add Layer Nemove Layer 190ve Layer	(optional)	2.5	Exp	ansion Co. (1/C	0.00005				
	第35%公司 [1]	Strength/Mode	ulus			Fatigue				
		Poisson	's Ratio	0.3000	Alpha	4		Rutting		Rutting
		Einf ((KPa)	9.7300e+04	a	0.0017	Beta	0.8026	p1	0.6069
	AC (Click to Edit Layer)	Ref. Ter	mp. (C)	5	b	0.5449	Epsilon0	0.0052	p2	0.0719
	Base (Click to Edit Laver)	Shift Fa	ictor al	6.9619e-04	Initial C	0.8000	NI	0.8024	d1	0.0396
		Shift Fa	ictor a2	-0.1620	Gamma	1000000	TR(C)	61	d2	1.6831
		Shift Fa	ictor a3	0.7928	Delta	-1.3500				
				[Import Dam	age Data	Import	Rutting Data		
		Ti 1 2.000 2 2.000 3 2.000 4 2.000 5 2.000 6 2.000 7 2.000	(sec) Ei (00e+16 75 00e+15 9 00e+14 26 00e+13 36 00e+12 68 00e+11 1.229 00e+10 2.228	KPa) 7.4885 + + 7.6079 = - 6.0952 6.5036 08e+03 87e+03 87e+03						Help
		8 2.00	00e+09 4.069	90e+03 - Im	port Prony Serie	s Data				нер
	Errors and Warnings									

-

FlexPAVETM (3)

FlexPAVETM (4)

FlexPAVE 1.0 Program : C:\Users\bkeshav\Desktop\Performance.lve File Analysis Tools Help 168 🕨 🛆 🔍 🍳 🐙 💡 Project General Information × Design Structure × Climate Information × Traffic × Analysis and Results Options × Result Information × Fatigue Cracking Results × Rutting Results × General Information Choose Component Design Structure Climate Data Rut Depth • Traffic Data Outputs and Analysis Options Rut Depth (cm) 1.4 B- Results Response Surface Layer Fatigue Cracking Viscoplastic Strain-Bottom Layer 1.2 Rutting Base Spatial Distribution Subgrade Time History Total Rut Depth 1 Export Graph Rut Depth (cm) 9.0 Table... Show 0.4 0.2 Tmin 0 240 0 Tmax 200 100 150 50 250 0 0 Ymin Time (Month) 1.4000 Ymax Errors and Warnings-.

÷

Challenges with PRS

- Testing efficiency and simplicity

 Completed/Continuous
- Standardization of test methods
 - Ongoing
- Verifying performance prediction models
 - Completed/continuous
- Performance volumetric relationships (PVR)
 - Ongoing
- Same principles and methods between mix design and PRS
 - Ongoing

Performance Volumetric Relationships (PVR)

- Predict as-built performance
 - Without performance testing
- Database developed at TFHRC
- Expansion underway in shadow projects
 - Will use plant-produced variations
- Agency and contractor guidance for planning purposes

Initial PVR Database

AMPT Cyclic Fatigue Summary

- Fundamental, repeated loading test
- Direct tension (pull-pull)
- Small-specimen testing available (AASHTO TP xxx)
- AASHTO TP 107 revisions out for ballot!
- Material behavior across wide range of loading conditions!

AMPT Cyclic Fatigue Process

Preparation

- Cylindrical specimen
- 100 mm x 130 mm
- Small-specimen: 38 mm x 110 mm
- End plate gluing, clamp system being explored
 - 2-3 days for mix

Testing

- Dynamic modulus fingerprint for specimen variability
 - Pull-pull fatigue test
- Strain level based on TFHRC database
- Test temperature based on location of interest
- Load until crack forms
 - 1-2 days for mix

Analysis

- AMPT automatically captures data for analysis

- Calculate damage via FlexMAT[™] or FlexPAVE[™]

- Assign mixture rankings or use FlexPAVE[™]
 - 1-2 hours for mix

About one week per mixture...worth it when considering the cost of premature failure?

Advantages of AMPT Cyclic Fatigue

- Standard sample preparation
- AASHTOWare Pavement ME compatible
- Ruggedness, precision and bias underway
- FlexMATTM & FlexPAVETM available
- Predicts performance!
- Material behavior across wide range of loading/temperature conditions!

AMPT Implementation

- Transportation Pooled Fund Study (TPF(5)-178)
 - Purchase, installation of 29 AMPTs
 - NHI Course (over 80 trainees)
 - Interlaboratory study on effect of air voids
 - National workshop
 - Equipment specification, and others!
- Test standard development, improvement, and revision
- Instructional videos, TechBriefs
- PRS shadow implementation (TFHRC-led)
- Mobile Asphalt Testing Trailer (MATT) projects/training
- User Groups at TRB and regional meetings

AMPT Users Group

- National/International
 - -TRB Annual Meeting
 - Discussion of issues, best practices, future efforts
 - -70 attendees, 10 DOTs present
- Regional
 - User-Producer Groups
 - State Asphalt Paving Assoc. meetings

AMPT Users Group

- National/International
 - -TRB Annual Meeting

NEXT AMPT USERS GROUP MEETING JULY 25 AT 1 PM EASTERN

- Regional
 - User-Producer Groups
 - State Asphalt Paving Assoc. meetings

Shadow PRS Status

- Maine DOT SHRP2 R07
- Western Federal Lands SHRP2 R07
- Missouri DOT 2 projects (3 total mixtures)
- North Carolina DOT SHRP2 R07
- MATT support
- Marketing of success stories
- SEEKING ADDITIONAL SHADOW PROJECTS WITH DOTs

Office of Asset Management, Pavements, & Construction

Asphalt Technology Guidance Program (ATGP)

Program Objectives

- Advance Performance
- Advance Quality Assurance
- Advance Innovation

Federal Highway Administration

Courtesy of Anton Paar

Program Focus Areas

- Provide Support to National Initiatives
 - Increased Pavement Density
 - Increased RAP/RAS Usage
 - Understanding GTR Testing
 - Mixture Performance Testing and the AMPT
 - Stone Matrix Asphalt
 - Binder Performance Testing

Long-Term Aging

Program Focus Areas (2)

- Equipment Development & Refinement
 - Asphalt Mixture Performance Tester (AMPT)
 - Standardization of Equipment, Test Methods
 - Binder Performance Testing
- Development of New QA Concepts for HMA
 - Performance-Based/Related and Risk-Based Acceptance
- Advanced Rapid Test Tools
 - AIMS, CoreLok, CoreDry, Small-Scale Geometry

Solutions to Agency Needs

- Project-Specific Workplans
 - -Material Characterization
 - High RAP/RAS, GTR, SMA, PRS...
 - -Mix Design Replication and Testing
 - -Mix Production Testing
 - -Performance Prediction
 - -Training and Demonstration

Thank you!

- Questions?
- Contact information (AMPT and PRS)
 - David Mensching
 - 202.366.1286
 - <u>david.mensching@dot.gov</u>
- Contact information (PRS and Shadow)
 - Richard Duval
 - 202.493.3365
 - <u>Richard.duval@dot.gov</u>

